Full-Race VW 1.8T Turbo Manifold Test
ProStreet Tubular Manifold vs. Log Style Manifold.

Abstract

Full-Race Motor sports conducted a back to back manifold experiment testing the performance gains of our ProStreet manifold versus a log or cast style manifold. All variables during this experiment were held constant as possible. The test proved that FullRace ProStreet manifold offers greater performance than a log or cast style manifold!. Midrange and overall power band gains where also greater with the ProStreet manifold when compared to the log or cast style manifold.

Introduction

A back to back manifold test was conducted to determine the performance difference between a Full-Race ProStreet turbo manifold and a traditional log or cast style turbo manifold. Every possible aspect and or variable of the experiment was controlled. All testing was performed on an engine dyno. The only variable that was manipulated was the swapping of manifolds. The tests performed were setup with the following conditions:

Test \#1

-VW 1.8T motor
-Log/Cast manifold
-Garrett GT30R

Figure 1. Cast/Log Style Manifold

Test \#2
-VW 1.8T motor
-FR ProStreet Manifold
-Garrett GT30R

Figure 2. FR-ProStreet Turbo Manifold

Figure 3. Engine Dyno

Results

The results were quite astonishing, but do make a lot of sense. The log manifold spooled the turbo about 100 rpm sooner than the equal length. From $\sim 4400 \mathrm{rpm}$ on the log manifold could not keep up with the ProStreet manifold.

ATP LOG vs FULL-RACE IND. RUNNER MANIFOLD

Figure 4. Full Race manifold power output vs ATP log at identical boost pressures.

Figure 5.100 octane, 23.5psi boost pressure comparison graphs. FR manifold output is denoted as trq=aqua line and bhp=red line. Cast manifold output is denoted as trq=green line and blue=bhp.

Figure 6. Engine dyno data.

Listing of: BBQU8364 (C: \WINDYN\901\05\BOBQ\BBQU8364.SED) Channel Group: Torque, Power, AFR, Pressures and Temps etc Page 1 Printed on Apr 20, 2005 at 10:57:13 Test Description: Accel. Test $-200 \mathrm{rpm} / \mathrm{second}$									
	EngSpd RPM	STP HP CHp	STPTrq Clb-ft	O2AFR Ratio	VolEff	$\begin{array}{r} \text { Oil } \\ \text { psig } \end{array}$	$\begin{array}{r} \text { Oil } \\ \operatorname{deg} \mathrm{F} \end{array}$	Water degF	AirTmp $\operatorname{deg} \mathrm{F}$
	4100	166.8	213.6	11.7	0.0	94.9	168	180	72
	4200	176.4	220.6	11.6	0.0	96.1	168	180	72
	4300	191.2	233.5	11.5	0.0	97.4	168	180	72
	4400	213.0	254.2	11.4	0.0	99.4	168	180	72
	4500	225.1	262.7	11.2	0.0	100.8	168	180	72
	4600	250.9	286.5	11.2	0.0	102.4	168	180	72
	4700	269.8	301.5	11.2	0.0	103.2	168	180	72
	4800	285.1	311.9	11.3	0.0	104.6	168	180	73
	4900	307.2	329.3	11.3	0.0	105.4	168	180	74
	5000	320.3	336.4	11.3	0.0	106.4	168	180	73
	5100	327.8	337.6	11.2	0.0	108.1	168	179	72
	5200	337.3	340.7	11.2	0.0	109.3	168	179	72
	5300	345.6	342.5	11.1	0.0	109.2	168	178	71
	5400	364.6	354.6	11.1	0.0	111.5	168	178	72
	5500	381.9	364.7	11.1	0.0	113.6	168	178	72
	5600	394.8	370.2	11.1	0.0	115.0	168	178	72
	5700	400.8	369.3	11.1	0.0	116.0	168	178	73
	5800	410.2	371.5	11.1	0.0	116.8	168	178	73
	5900	417.1	371.3	11.1	0.0	119.4	168	179	73
	6000	421.9	369.3	11.1	0.0	118.8	166	179	73
	6100	424.9	365.9	11.0	0.0	120.2	167	179	73
	6200	425.5	360.5	11.0	0.0	120.6	167	179	73
	6300	434.7	362.4	11.0	0.0	120.6	168	179	72
	6400	437.5	359.0	11.0	0.0	121.7	168	180	73
	6500	454.3	367.1	11.0	0.0	121.4	168	181	73
	6600	464.3	369.4	11.0	0.0	122.4	168	181	73
	6700	474.7	372.1	11.0	0.0	123.6	168	181	73
	6800	484.9	374.5	11.0	0.0	123.8	168	181	73
	6900	490.0	373.0	11.0	0.0	124.3	168	181	73
	7000	494.5	371.0	11.0	0.0	125.4	168	181	73
	7100	494.7	365.9	11.0	0.0	125.7	168	181	73
	7200	496.7	362.3	11.0	0.0	126.3	169	181	73
	7300	494.4	355.7	11.0	0.0	126.4	169	181	73
	7400	496.7	352.5	11.0	0.0	127.1	169	181	73
	7500	502.0	351.5	11.0	0.0	126.7	169	181	73
	7600	499.1	344.9	11.1	0.0	127.6	169	181	74
**Rar	ge: 500	RPM -	7500 RP						
AVG:	6250	430.5	361.2	11.1	0.0	119.2	168	180	73
MIN:	5000	320.3	336.4	11.0	0.0	106.4	166	178	71
MAX:	7500	502.0	374.5	11.3	0.0	127.1	169	181	73

Figure 7. Engine dyno data.

Figure 8. Engine dyno data.

Figure 9. Engine dyno data.

Figure 10 . Engine dyno data

